Black GaAs by Metal-Assisted Chemical Etching

ACS Appl Mater Interfaces. 2018 Oct 3;10(39):33434-33440. doi: 10.1021/acsami.8b10370. Epub 2018 Sep 18.

Abstract

Large area surface microstructuring is commonly employed to suppress light reflection and enhance light absorption in silicon photovoltaic devices, photodetectors, and image sensors. To date, however, there are no simple means to control the surface roughness of III-V semiconductors by chemical processes similar to the metal-assisted chemical etching of black Si. Here, we demonstrate the anisotropic metal-assisted chemical etching of GaAs wafers exploiting the lower etching rate of the monoatomic Ga<111> and <311> planes. By studying the dependence of this process on different crystal orientations, we propose a qualitative reaction mechanism responsible for the self-limiting anisotropic etching and show that the reflectance of the roughened surface of black GaAs reduces up to ∼50 times compared to polished wafers, nearly doubling its absorption. This method provides a new, simple, and scalable way to enhance light absorption and power conversion efficiency of GaAs solar cells and photodetectors.

Keywords: III−V semiconductors; anisotropic etching; black GaAs; metal-assisted chemical etching; perfect antireflection.