Snake venom is well known for its ability to incapacitate and kill prey. Yet, potency and the amount of venom available varies greatly across species, ranging from the seemingly harmless to those capable of killing vast numbers of potential prey. This variation is poorly understood, with comparative approaches confounded by the use of atypical prey species as models to measure venom potency. Here, we account for such confounding issues by incorporating the phylogenetic similarity between a snake's diet and the species used to measure its potency. In a comparative analysis of 102 species we show that snake venom potency is generally prey-specific. We also show that venom yields are lower in species occupying three dimensional environments and increases with body size corresponding to metabolic rate, but faster than predicted from increases in prey size. These results underline the importance of physiological and environmental factors in the evolution of predator traits.
Keywords: Body size; LD50; comparative analysis; macroecology; phylogenetic analysis; scaling; snake; trophic ecology; venom.
© 2019 John Wiley & Sons Ltd/CNRS.