mtDNA Chromatin-like Organization Is Gradually Established during Mammalian Embryogenesis

iScience. 2019 Feb 22:12:141-151. doi: 10.1016/j.isci.2018.12.032. Epub 2019 Jan 8.

Abstract

Unlike the nuclear genome, the mammalian mitochondrial genome (mtDNA) is thought to be coated solely by mitochondrial transcription factor A (TFAM), whose binding sequence preferences are debated. Therefore, higher-order mtDNA organization is considered much less regulated than both the bacterial nucleoid and the nuclear chromatin. However, our recently identified conserved DNase footprinting pattern in human mtDNA, which co-localizes with regulatory elements and responds to physiological conditions, likely reflects a structured higher-order mtDNA organization. We hypothesized that this pattern emerges during embryogenesis. To test this hypothesis, we analyzed assay for transposase-accessible chromatin sequencing (ATAC-seq) results collected during the course of mouse and human early embryogenesis. Our results reveal, for the first time, a gradual and dynamic emergence of the adult mtDNA footprinting pattern during embryogenesis of both mammals. Taken together, our findings suggest that the structured adult chromatin-like mtDNA organization is gradually formed during mammalian embryogenesis.

Keywords: Biological Sciences; Developmental Biology; Developmental Genetics; Molecular Genetics.