Loss of MIEF1/MiD51 confers susceptibility to BAX-mediated cell death and PINK1-PRKN-dependent mitophagy

Autophagy. 2019 Dec;15(12):2107-2125. doi: 10.1080/15548627.2019.1596494. Epub 2019 Mar 28.

Abstract

Mitochondrial dynamics is highly implicated in a plethora of cellular processes including apoptosis and mitophagy. However, little is known about the scope and precise functions of mitochondrial dynamics proteins for mitochondrial quality control and cellular homeostasis. Whether mitochondrial dynamics proteins serve in cellular processes reliant on mitochondrial fission-fusion is still not fully explored. MIEF1/MiD51 (mitochondrial elongation factor 1) is known to promote mitochondrial fission via the recruitment of GTPase protein DNM1L/DRP1 (dynamin 1 like), but the fundamental understandings of MIEF1 for mitochondrial-dependent cellular processes are largely elusive. Here, we report novel roles of MIEF1 in responding to apoptotic stimuli and mitochondrial damage. Given our result that staurosporine (STS) treatment induced the degradation of MIEF1 via the ubiquitin-proteasome system (UPS), we are motivated to explore the role of MIEF1 in apoptosis. MIEF1 loss triggered the imbalance of BCL2 family members on the mitochondria, consequently initiating the translocation of BAX onto the mitochondria, catalyzing the decrease of mitochondrial membrane potential and promoting the release of DIABLO/SMAC (diablo IAP-binding mitochondrial protein) and CYCS (cytochrome c, somatic). We further demonstrate that MIEF1 deficiency impaired mitochondrial respiration and induced mitochondrial oxidative stress, sensitizing cells to PINK1-PRKN-mediated mitophagy. The recruitment of PRKN to depolarized mitochondria modulated the UPS-dependent degradation of MFN2 (mitofusin 2) and FIS1 (fission, mitochondrial 1) specifically, to further promote mitophagy. Our findings uncover a bridging role of MIEF1 integrating cell death and mitophagy, unlikely dependent on mitochondrial dynamics, implying new insights to mechanisms determining cellular fate.Abbreviations: ActD: actinomycin D; BAX: BCL2 associated X, apoptosis regulator; BAK1: BCL2 antagonist/killer 1; BCL2L1: BCL2 like 1; BMH: 1,6-bismaleimidohexane; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CHX: cycloheximide; CQ: chloroquine; CYCS: cytochrome c, somatic; DIABLO: diablo IAP-binding mitochondrial protein; DKO: double knockout; DNM1L/DRP1: dynamin 1 like; FIS1: fission, mitochondrial 1; GFP: green fluorescent protein; IP: immunoprecipitation; MFN1: mitofusin 1; MFN2: mitofusin 2; MG132: carbobenzoxy-Leu-Leu-leucinal; MIEF1/MiD51: mitochondrial elongation factor 1; MIEF2/MiD49: mitochondrial elongation factor 2; MOMP: mitochondrial outer membrane permeabilization; MTR: MitoTracker Red; OA: oligomycin plus antimycin A; OCR: oxygen consumption rate; OMM: outer mitochondrial membrane; PARP: poly(ADP-ribose) polymerase; PI: propidium iodide; PINK1: PTEN induced kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; ROS: reactive oxygen species; SD: standard deviation; STS: staurosporine; TNF: tumor necrosis factor; UPS: ubiquitin-proteasome system; VDAC1: voltage dependent anion channel 1.

Keywords: Apoptosis; BAX; MIEF1; mitochondria; mitophagy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Apoptosis / drug effects
  • Apoptosis / genetics
  • Apoptosis Regulatory Proteins / genetics
  • Apoptosis Regulatory Proteins / metabolism
  • Dynamins / genetics
  • Dynamins / metabolism
  • GTP Phosphohydrolases / genetics
  • GTP Phosphohydrolases / metabolism
  • HEK293 Cells
  • HeLa Cells
  • Humans
  • Membrane Potential, Mitochondrial / drug effects
  • Membrane Potential, Mitochondrial / genetics*
  • Membrane Proteins / genetics
  • Membrane Proteins / metabolism
  • Mitochondria / genetics
  • Mitochondria / metabolism*
  • Mitochondria / pathology
  • Mitochondrial Dynamics / drug effects
  • Mitochondrial Dynamics / genetics
  • Mitochondrial Proteins / genetics
  • Mitochondrial Proteins / metabolism*
  • Mitophagy / drug effects
  • Mitophagy / genetics*
  • Peptide Elongation Factors / genetics
  • Peptide Elongation Factors / metabolism*
  • Proteasome Endopeptidase Complex / drug effects
  • Proteasome Endopeptidase Complex / genetics
  • Proteasome Endopeptidase Complex / metabolism
  • Protein Kinases / genetics
  • Protein Kinases / metabolism
  • Reactive Oxygen Species / metabolism
  • Receptors, Cytoplasmic and Nuclear / genetics
  • Receptors, Cytoplasmic and Nuclear / metabolism
  • Staurosporine / pharmacology
  • Ubiquitin-Protein Ligases / genetics
  • Ubiquitin-Protein Ligases / metabolism
  • Ubiquitination / drug effects
  • Ubiquitination / genetics
  • bcl-2-Associated X Protein / genetics
  • bcl-2-Associated X Protein / metabolism*
  • bcl-X Protein / genetics
  • bcl-X Protein / metabolism*

Substances

  • Apoptosis Regulatory Proteins
  • BAX protein, human
  • BCL2L1 protein, human
  • DIABLO protein, human
  • FIS1 protein, human
  • MIEF1 protein, human
  • Membrane Proteins
  • MiD51 protein, mouse
  • Mitochondrial Proteins
  • Peptide Elongation Factors
  • Reactive Oxygen Species
  • Receptors, Cytoplasmic and Nuclear
  • bcl-2-Associated X Protein
  • bcl-X Protein
  • Ubiquitin-Protein Ligases
  • parkin protein
  • Protein Kinases
  • PTEN-induced putative kinase
  • Proteasome Endopeptidase Complex
  • GTP Phosphohydrolases
  • MFN2 protein, human
  • DNM1L protein, human
  • Dynamins
  • Staurosporine

Grants and funding

This work was supported by the Ministry of Education - Singapore [MOE Tier 2 (MOE2017-T2-1-131) and Tier 1 (R-154-000-A15-114)].