[Electrhopysiological Effect of the Polyamine Spermine in Normoxic and Ischemic Ventricular Myocardium]

Kardiologiia. 2019 Apr 13;59(3):43-51. doi: 10.18087/cardio.2019.3.10240.
[Article in Russian]

Abstract

Cytoplasmic polyamines (PA) are involved in control of many cellular functions and are well known as regulators of so called inward-rectifier potassium ion channels. Nevertheless, functional significance of extracellular PA in the heart is poorly elucidated. Aim of this study was to study effects of endogenous PA spermine in the ventricular myocardium. Effects of the extracellular spermine were investigated in isolated multicellular preparations of rabbit and rat ventricular myocardium. Langendorff-perfused isolated rat and rabbit hearts were also used. Action potential (APs) duration and pattern of excitation in ventricular myocardium were estimated using standard microelectrode technique and optical mapping. Functional refractory periods were assessed in Langendorff perfused hearts with the help of programmedelectrical stimulation of the ventricle. In this study extracellular PA spermine (0.1-5 mM) induced shortening of the APs in multicellular preparations of rat ventricular myocardium registered using sharp microelectrode technique. However, spermine caused only weak effect in preparations of ventricular myocardium from rabbit heart: highest tested concentration of spermine (5 mM) induced 4.7 % APs shortening. Similarly, 0.1-1 mM of spermine was unable to alter substantially ventricular effective refractory periods in isolated perfused rabbit hearts. In two animal species tested (rat and rabbit) 0.1-1 mM of spermine failed to affect conduction velocity and activation pattern in ventricles of isolated Langendorff-perfused hearts under normoxia. However, in the rat no-flow model of ischemia-reperfusion extracellular spermine improved conduction of excitation in ventricles. Our results allow suggesting that extracellular spermine can prevent ischemia-induced proarrhythmic changes in ventricular myocardium probably due to reduction of calcium accumulation, but this effect is significant only when PA is applied in millimolar concentrations. Also, potential anti-ischemic effect of the PA may be species specific.

MeSH terms

  • Animals
  • Heart
  • Heart Ventricles
  • Myocardium*
  • Polyamines
  • Rabbits
  • Rats
  • Spermine

Substances

  • Polyamines
  • Spermine