The Effects of Doxorubicin-based Chemotherapy and Omega-3 Supplementation on Mouse Brain Lipids

Metabolites. 2019 Sep 29;9(10):208. doi: 10.3390/metabo9100208.

Abstract

Chemotherapy-induced cognitive impairment affects ~30% of breast cancer survivors, but the effects on how chemotherapy impacts brain lipids, and how omega-3 polyunsaturated fatty acid supplementation may confer protection, is unknown. Ovariectomized mice were randomized to two rounds of injections of doxorubicin + cyclophosphamide or vehicle after consuming a diet supplemented with 2% or 0% EPA+DHA, and sacrificed 4, 7, and 14 days after the last injection (study 1, n = 120) or sacrificed 10 days after the last injection (study 2, n = 40). Study 1 whole brain samples were extracted and analyzed by UHPLC-MS/MS to quantify specialized pro-resolving mediators (SPMs). Lipidomics analyses were performed on hippocampal extracts from study 2 to determine changes in the brain lipidome. Study 1 results: only resolvin D1 was present in all samples, but no differences in concentration were observed (P > 0.05). Study 2 results: chemotherapy was positively correlated with omega-9 fatty acids, and EPA+DHA supplementation helped to maintain levels of plasmalogens. No statistically significant chemotherapy*diet effect was observed. Results demonstrate a limited role of SPMs in the brain post-chemotherapy, but a significant alteration of hippocampal lipids previously associated with other models of cognitive impairment (i.e., Alzheimer's and Parkinson's disease).

Keywords: DHA; EPA; chromatography; hippocampus; lipidomics; mass spectrometry; specialized pro-resolving mediators.