Shedding Light on Proton and Electron Dynamics in [FeFe] Hydrogenases

J Am Chem Soc. 2020 Mar 25;142(12):5493-5497. doi: 10.1021/jacs.9b13075. Epub 2020 Mar 16.

Abstract

[FeFe] hydrogenases are highly efficient catalysts for reversible dihydrogen evolution. H2 turnover involves different catalytic intermediates including a recently characterized hydride state of the active site (H-cluster). Applying cryogenic infrared and electron paramagnetic resonance spectroscopy to an [FeFe] model hydrogenase from Chlamydomonas reinhardtii (CrHydA1), we have discovered two new hydride intermediates and spectroscopic evidence for a bridging CO ligand in two reduced H-cluster states. Our study provides novel insights into these key intermediates, their relevance for the catalytic cycle of [FeFe] hydrogenase, and novel strategies for exploring these aspects in detail.

Publication types

  • Research Support, Non-U.S. Gov't