The Frog Motor Nerve Terminal Has Very Brief Action Potentials and Three Electrical Regions Predicted to Differentially Control Transmitter Release

J Neurosci. 2020 Apr 29;40(18):3504-3516. doi: 10.1523/JNEUROSCI.2415-19.2020. Epub 2020 Apr 7.

Abstract

The action potential (AP) waveform controls the opening of voltage-gated calcium channels and contributes to the driving force for calcium ion flux that triggers neurotransmission at presynaptic nerve terminals. Although the frog neuromuscular junction (NMJ) has long been a model synapse for the study of neurotransmission, its presynaptic AP waveform has never been directly studied, and thus the AP waveform shape and propagation through this long presynaptic nerve terminal are unknown. Using a fast voltage-sensitive dye, we have imaged the AP waveform from the presynaptic terminal of male and female frog NMJs and shown that the AP is very brief in duration and actively propagated along the entire length of the terminal. Furthermore, based on measured AP waveforms at different regions along the length of the nerve terminal, we show that the terminal is divided into three distinct electrical regions: A beginning region immediately after the last node of Ranvier where the AP is broadest, a middle region with a relatively consistent AP duration, and an end region near the tip of nerve terminal branches where the AP is briefer. We hypothesize that these measured changes in the AP waveform along the length of the motor nerve terminal may explain the proximal-distal gradient in transmitter release previously reported at the frog NMJ.SIGNIFICANCE STATEMENT The AP waveform plays an essential role in determining the behavior of neurotransmission at the presynaptic terminal. Although the frog NMJ is a model synapse for the study of synaptic transmission, there are many unknowns centered around the shape and propagation of its presynaptic AP waveform. Here, we demonstrate that the presynaptic terminal of the frog NMJ has a very brief AP waveform and that the motor nerve terminal contains three distinct electrical regions. We propose that the changes in the AP waveform as it propagates along the terminal can explain the proximal-distal gradient in transmitter release seen in electrophysiological studies.

Keywords: Action potential; Nerve terminal; Neuromuscular junction; Synaptic transmission; Voltage imaging.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Action Potentials / drug effects
  • Action Potentials / physiology*
  • Animals
  • Female
  • Forecasting
  • Male
  • Neuromuscular Junction / drug effects
  • Neuromuscular Junction / metabolism*
  • Neurotransmitter Agents / metabolism*
  • Organ Culture Techniques
  • Rana pipiens
  • Sodium Channel Blockers / pharmacology
  • Time Factors

Substances

  • Neurotransmitter Agents
  • Sodium Channel Blockers