LDL subclass lipidomics in atherogenic dyslipidemia: effect of statin therapy on bioactive lipids and dense LDL

J Lipid Res. 2020 Jun;61(6):911-932. doi: 10.1194/jlr.P119000543. Epub 2020 Apr 15.

Abstract

Atherogenic LDL particles are physicochemically and metabolically heterogeneous. Can bioactive lipid cargo differentiate LDL subclasses, and thus potential atherogenicity? What is the effect of statin treatment? Obese hypertriglyceridemic hypercholesterolemic males [n = 12; lipoprotein (a) <10 mg/dl] received pitavastatin calcium (4 mg/day) for 180 days in a single-phase unblinded study. The lipidomic profiles (23 lipid classes) of five LDL subclasses fractionated from baseline and post-statin plasmas were determined by LC-MS. At baseline and on statin treatment, very small dense LDL (LDL5) was preferentially enriched (up to 3-fold) in specific lysophospholipids {LPC, lysophosphatidylinositol (LPI), lysoalkylphosphatidylcholine [LPC(O)]; 9, 0.2, and 0.14 mol per mole of apoB, respectively; all P < 0.001 vs. LDL1-4}, suggesting elevated inflammatory potential per particle. In contrast, lysophosphatidylethanolamine was uniformly distributed among LDL subclasses. Statin treatment markedly reduced absolute plasma concentrations of all LDL subclasses (up to 33.5%), including LPC, LPI, and LPC(O) contents (up to -52%), consistent with reduction in cardiovascular risk. Despite such reductions, lipotoxic ceramide load per particle in LDL1-5 (1.5-3 mol per mole of apoB; 3-7 mmol per mole of PC) was either conserved or elevated. Bioactive lipids may constitute biomarkers for the cardiometabolic risk associated with specific LDL subclasses in atherogenic dyslipidemia at baseline, and with residual risk on statin therapy.

Trial registration: ClinicalTrials.gov NCT01595828.

Keywords: ceramides; isopycnic density gradient ultracentrifugation; lipoprotein-associated phospholipase A2; liquid chromatography electrospray ionization-tandem mass spectrometry; low density lipoprotein; low density lipoprotein subclass heterogeneity; lysophosphatidylcholine; metabolic syndrome; pitavastatin calcium.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Atherosclerosis / complications*
  • Dyslipidemias / complications
  • Dyslipidemias / drug therapy*
  • Dyslipidemias / metabolism*
  • Female
  • Humans
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors / pharmacology*
  • Hydroxymethylglutaryl-CoA Reductase Inhibitors / therapeutic use
  • Lipidomics*
  • Lipoproteins, LDL / metabolism*
  • Male
  • Middle Aged

Substances

  • Hydroxymethylglutaryl-CoA Reductase Inhibitors
  • Lipoproteins, LDL

Associated data

  • ClinicalTrials.gov/NCT01595828