Natural products may interfere with SARS-CoV-2 attachment to the host cell

J Biomol Struct Dyn. 2021 Jun;39(9):3194-3203. doi: 10.1080/07391102.2020.1761881. Epub 2020 May 5.

Abstract

SARS-CoV-2 has been emerged in December 2019 in China, causing deadly (5% mortality) pandemic pneumonia, termed COVID-19. More than one host-cell receptor is reported to be recognized by the viral spike protein, among them is the cell-surface Heat Shock Protein A5 (HSPA5), also termed GRP78 or BiP. Upon viral infection, HSPA5 is upregulated, then translocating to the cell membrane where it is subjected to be recognized by the SARS-CoV-2 spike. In this study, some natural product compounds are tested against the HSPA5 substrate-binding domain β (SBDβ), which reported to be the recognition site for the SARS-CoV-2 spike. Molecular docking and molecular dynamics simulations are used to test some natural compounds binding to HSPA5 SBDβ. The results show high to a moderate binding affinity for the phytoestrogens (Diadiazin, Genistein, Formontein, and Biochanin A), chlorogenic acid, linolenic acid, palmitic acid, caffeic acid, caffeic acid phenethyl ester, hydroxytyrosol, cis-p-Coumaric acid, cinnamaldehyde, thymoquinone, and some physiological hormones such as estrogens, progesterone, testosterone, and cholesterol to the HSPA5 SBDβ. Based on its binding affinities, the phytoestrogens and estrogens are the best in binding HSPA5, hence may interfere with SARS-CoV-2 attachment to the stressed cells. These compounds can be successful as anti-COVID-19 agents for people with a high risk of cell stress like elders, cancer patients, and front-line medical staff.Communicated by Ramaswamy H. Sarma.

Keywords: COVID-19; GRP78; HSPA5; molecular dynamics simulation; natural compounds; peptide-protein docking.

MeSH terms

  • Aged
  • Binding Sites
  • Biological Products*
  • COVID-19*
  • Endoplasmic Reticulum Chaperone BiP
  • Humans
  • Molecular Docking Simulation
  • SARS-CoV-2

Substances

  • Biological Products
  • Endoplasmic Reticulum Chaperone BiP
  • HSPA5 protein, human