Human MAIT cell cytolytic effector proteins synergize to overcome carbapenem resistance in Escherichia coli

PLoS Biol. 2020 Jun 8;18(6):e3000644. doi: 10.1371/journal.pbio.3000644. eCollection 2020 Jun.

Abstract

Mucosa-associated invariant T (MAIT) cells are abundant antimicrobial T cells in humans and recognize antigens derived from the microbial riboflavin biosynthetic pathway presented by the MHC-Ib-related protein (MR1). However, the mechanisms responsible for MAIT cell antimicrobial activity are not fully understood, and the efficacy of these mechanisms against antibiotic resistant bacteria has not been explored. Here, we show that MAIT cells mediate MR1-restricted antimicrobial activity against Escherichia coli clinical strains in a manner dependent on the activity of cytolytic proteins but independent of production of pro-inflammatory cytokines or induction of apoptosis in infected cells. The combined action of the pore-forming antimicrobial protein granulysin and the serine protease granzyme B released in response to T cell receptor (TCR)-mediated recognition of MR1-presented antigen is essential to mediate control against both cell-associated and free-living, extracellular forms of E. coli. Furthermore, MAIT cell-mediated bacterial control extends to multidrug-resistant E. coli primary clinical isolates additionally resistant to carbapenems, a class of last resort antibiotics. Notably, high levels of granulysin and granzyme B in the MAIT cell secretomes directly damage bacterial cells by increasing their permeability, rendering initially resistant E. coli susceptible to the bactericidal activity of carbapenems. These findings define the role of cytolytic effector proteins in MAIT cell-mediated antimicrobial activity and indicate that granulysin and granzyme B synergize to restore carbapenem bactericidal activity and overcome carbapenem resistance in E. coli.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Infective Agents / pharmacology
  • Antigens, Differentiation, T-Lymphocyte / metabolism*
  • Bacterial Load / drug effects
  • Carbapenems / pharmacology*
  • Cytotoxicity, Immunologic* / drug effects
  • Drug Resistance, Bacterial / drug effects*
  • Escherichia coli / drug effects*
  • Granzymes / metabolism*
  • HeLa Cells
  • Humans
  • Kinetics
  • Mucosal-Associated Invariant T Cells / immunology*

Substances

  • Anti-Infective Agents
  • Antigens, Differentiation, T-Lymphocyte
  • Carbapenems
  • GNLY protein, human
  • Granzymes