Unraveling Latent Aspects of Urban Expansion: Desertification Risk Reveals More

Int J Environ Res Public Health. 2020 Jun 4;17(11):4001. doi: 10.3390/ijerph17114001.

Abstract

Urban expansion results in socioeconomic transformations with relevant impacts for peri-urban soils, leading to environmental concerns about land degradation and increased desertification risk in ecologically fragile districts. Spatial planning can help achieve sustainable land-use patterns and identify alternative locations for settlements and infrastructure. However, it is sometimes unable to comprehend and manage complex processes in metropolitan developments, fueling unregulated and mainly dispersed urban expansion on land with less stringent building constraints. Using the Mediterranean cities of Barcelona and Rome as examples of intense urbanization and ecological fragility, the present study investigated whether land use planning in these cities is (directly or indirectly) oriented towards conservation of soil quality and mitigation of desertification risk. Empirical results obtained using composite, geo-referenced indices of soil quality (SQI) and sensitivity to land desertification (SDI), integrated with high-resolution land zoning maps, indicated that land devoted to natural and semi-natural uses has lower soil quality in both contexts. The highest values of SDI, indicating high sensitivity to desertification, were observed in fringe areas with medium-high population density and settlement expansion. These findings reveal processes of land take involving buildable soils, sometimes of high quality, and surrounding landscapes in both cities. Overall, the results in this study can help inform land use planers and policymakers for conservation of high-quality soils, especially under weak (or partial) regulatory constraints.

Keywords: Mediterranean Europe; indicators; land degradation; land use planning; suburbs.

MeSH terms

  • Cities
  • Conservation of Natural Resources*
  • Population Density
  • Soil*
  • Urbanization*

Substances

  • Soil