Genomic and transcriptomic analyses in Drosophila suggest that the ecdysteroid kinase-like (EcKL) gene family encodes the 'detoxification-by-phosphorylation' enzymes of insects

Insect Biochem Mol Biol. 2020 Aug:123:103429. doi: 10.1016/j.ibmb.2020.103429. Epub 2020 Jun 12.

Abstract

Phosphorylation is a phase II detoxification reaction that, among animals, occurs near exclusively in insects, but the enzymes responsible have never been cloned or otherwise identified. We propose the hypothesis that members of the arthropod-specific ecdysteroid kinase-like (EcKL) gene family encode detoxicative kinases. To test this hypothesis, we annotated the EcKL gene family in 12 species of Drosophila and explored their evolution within the genus. Many ancestral EcKL clades are evolutionarily unstable and have experienced repeated gene gain and loss events, while others are conserved as single-copy orthologs. Leveraging multiple published gene expression datasets from D. melanogaster, and using the cytochrome P450s-a classical detoxification family-as a test case, we demonstrate relationships between xenobiotic induction, detoxification tissue-enriched expression and evolutionary instability in the EcKLs and the P450s. We devised a systematic method for identifying candidate detoxification genes in large gene families that is concordant with experimentally determined functions of P450 genes in D. melanogaster. Applying this method to the EcKLs suggested a significant proportion of these genes play roles in detoxification, and that the EcKLs may constitute a detoxification gene family in insects. Additionally, we estimate that between 11 and 16 uncharacterised D. melanogaster P450s are strong detoxification candidates. Lastly, we also found previously unreported genomic and transcriptomic variation in a number of EcKLs and P450s associated with toxic stress phenotypes using a targeted phenome-wide association study (PheWAS) approach in D. melanogaster, presenting multiple future avenues of research for detoxification genetics in this species.

Keywords: CHKov1; Cytochrome P450; DUF227; Ecdysone; JhI-26; PheWAS.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cytochrome P-450 Enzyme System / genetics
  • Cytochrome P-450 Enzyme System / metabolism
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism
  • Drosophila melanogaster / genetics
  • Drosophila melanogaster / metabolism
  • Drosophila* / genetics
  • Drosophila* / metabolism
  • Ecdysteroids* / genetics
  • Ecdysteroids* / metabolism
  • Gene Expression Profiling
  • Genes, Insect
  • Genome, Insect
  • Genomics
  • Insecta
  • Phosphorylation / genetics
  • Phosphotransferases / genetics
  • Phosphotransferases / metabolism
  • Phylogeny
  • Transcriptome

Substances

  • Drosophila Proteins
  • Ecdysteroids
  • Cytochrome P-450 Enzyme System
  • Phosphotransferases