TGF-β1 induces N-cadherin expression by upregulating Sox9 expression and promoting its nuclear translocation in human oral squamous cell carcinoma cells

Oncol Lett. 2020 Jul;20(1):474-482. doi: 10.3892/ol.2020.11582. Epub 2020 May 4.

Abstract

Squamous cell carcinoma (SCC) is the most frequent cancer that develops in the oral cavity. Epithelial-mesenchymal transition (EMT) is known to play an important role in the process of metastasis of SCC cells. In our previous study, we demonstrated that TGF-β1 induced EMT in the human oral SCC (hOSCC) cell line HSC-4. We also found that Slug plays an important role in suppressing E-cadherin expression and promotion of the migratory activity of HSC-4 cells. However, we also demonstrated that Slug does not participate in upregulation of N-cadherin expression, suggesting that EMT-related transcription factors other than Slug also play an important role in the process. In the present study, we aimed to elucidate how the transcription factor Sox9 affects the TGF-β1-induced upregulation of N-cadherin expression in HSC-4 cells. We found that TGF-β1 upregulated Sox9 expression in HSC-4 cells. In addition, Sox9 siRNA significantly abrogated the TGF-β1-induced upregulation of N-cadherin expression and inhibited the TGF-β1-promoted migratory activity in HSC-4 cells. We also demonstrated that TGF-β1 upregulated the phosphorylation status of Sox9 and then promoted nuclear translocation of Sox9 from the cytoplasm, possibly resulting in an increase in N-cadherin expression. The cyclic AMP-dependent protein kinase A inhibitor H-89, which is known to suppress phosphorylation of Sox9, significantly abrogated the TGF-β1-induced upregulation of N-cadherin expression. These results suggested that TGF-β1 induced N-cadherin expression by upregulating Sox9 expression and promoting its nuclear translocation, which results in EMT progression in hOSCC cells.

Keywords: EMT; N-cadherin; Sox9; TGF-β; squamous cell carcinoma.