Coordinate Systems for Navigating Stereotactic Space: How Not to Get Lost

Cureus. 2020 Jun 12;12(6):e8578. doi: 10.7759/cureus.8578.

Abstract

All stereotactic neurosurgical procedures utilize coordinate systems to allow navigation through the brain to a target. During the surgical planning, indirect and direct targeting determines the planned target point and trajectory. This targeting allows a surgeon to precisely reach points along the trajectory while minimizing risks to critical structures. Oftentimes, once a target point and a trajectory are determined, a frame-based coordinate system is used for the actual procedure. Considerations include the use of various coordinate spaces such as the anatomical ([Formula: see text]), the frame ([Formula: see text]), the head-stage ([Formula: see text]), and an atlas. Therefore, the relationships between these coordinate systems are integral to the planning and implementation of the neurosurgical procedure. Although coordinate transformations are handled in planning via stereotactic software, critical understanding of the mathematics is required as it has implications during surgery. Further, intraoperative applications of these coordinate conversions, such as for surgical navigation from the head-stage, are not readily available in real-time. Herein, we discuss how to navigate these coordinate systems and provide implementations of the techniques with samples.

Keywords: cartesian coordinate system; coordinate transformation; euclidean space; stereotactic and functional; stereotactic frame.