How to fix DNA-protein crosslinks

DNA Repair (Amst). 2020 Oct:94:102924. doi: 10.1016/j.dnarep.2020.102924. Epub 2020 Jul 9.

Abstract

Proteins that act on DNA, or are in close proximity to it, can become inadvertently crosslinked to DNA and form highly toxic lesions, known as DNA-protein crosslinks (DPCs). DPCs are generated by different chemotherapeutics, environmental or endogenous sources of crosslinking agents, or by lesions on DNA that stall the catalytic cycle of certain DNA processing enzymes. These bulky adducts impair processes on DNA such as DNA replication or transcription, and therefore pose a serious threat to genome integrity. The large diversity of DPCs suggests that there is more than one canonical mechanism to repair them. Indeed, many different enzymes have been shown to act on DPCs by either processing the protein, the DNA or the crosslink itself. In addition, the cell cycle stage or cell type are likely to dictate pathway choice. In recent years, a detailed understanding of DPC repair during S phase has started to emerge. Here, we review the current knowledge on the mechanisms of replication-coupled DPC repair, and describe and also speculate on possible pathways that remove DPCs outside of S phase. Moreover, we highlight a recent paradigm shifting finding that indicates that DPCs are not always detrimental, but can also play a protective role, preserving the genome from more deleterious forms of DNA damage.

Keywords: DNA repair; DNA replication; DNA-protein crosslinks (DPCs).

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • DNA / chemistry
  • DNA Adducts / chemistry
  • DNA Adducts / metabolism*
  • DNA Repair*
  • DNA Replication*
  • Eukaryota / genetics
  • Eukaryota / metabolism
  • Humans
  • Proteins / chemistry

Substances

  • DNA Adducts
  • Proteins
  • DNA