Computational Fluid Dynamics (CFD) as a Tool for Investigating Self-Organized Ascending Bubble-Driven Flow Patterns in Champagne Glasses

Foods. 2020 Jul 23;9(8):972. doi: 10.3390/foods9080972.

Abstract

Champagne glasses are subjected to complex ascending bubble-driven flow patterns, which are believed to enhance the release of volatile organic compounds in the headspace above the glasses. Based on the Eulerian-Lagrangian approach, computational fluid dynamics (CFD) was used in order to examine how a column of ascending bubbles nucleated at the bottom of a classical champagne glass can drive self-organized flow patterns in the champagne bulk and at the air/champagne interface. Firstly, results from two-dimensional (2D) axisymmetric simulations were compared with a set of experimental data conducted through particle image velocimetry (PIV). Secondly, a three-dimensional (3D) model was developed by using the conventional volume-of-fluid (VOF) multiphase method to resolve the interface between the mixture's phases (wine-air). In complete accordance with several experimental observations conducted through laser tomography and PIV techniques, CFD revealed a very complex flow composed of surface eddies interacting with a toroidal flow that develops around the ascending bubble column.

Keywords: CFD; PIV; VOF method; bubbles; champagne; flow patterns.