MICAL1 constrains cardiac stress responses and protects against disease by oxidizing CaMKII

J Clin Invest. 2020 Sep 1;130(9):4663-4678. doi: 10.1172/JCI133181.

Abstract

Oxidant stress can contribute to health and disease. Here we show that invertebrates and vertebrates share a common stereospecific redox pathway that protects against pathological responses to stress, at the cost of reduced physiological performance, by constraining Ca2+/calmodulin-dependent protein kinase II (CaMKII) activity. MICAL1, a methionine monooxygenase thought to exclusively target actin, and MSRB, a methionine reductase, control the stereospecific redox status of M308, a highly conserved residue in the calmodulin-binding (CaM-binding) domain of CaMKII. Oxidized or mutant M308 (M308V) decreased CaM binding and CaMKII activity, while absence of MICAL1 in mice caused cardiac arrhythmias and premature death due to CaMKII hyperactivation. Mimicking the effects of M308 oxidation decreased fight-or-flight responses in mice, strikingly impaired heart function in Drosophila melanogaster, and caused disease protection in human induced pluripotent stem cell-derived cardiomyocytes with catecholaminergic polymorphic ventricular tachycardia, a CaMKII-sensitive genetic arrhythmia syndrome. Our studies identify a stereospecific redox pathway that regulates cardiac physiological and pathological responses to stress across species.

Keywords: Cardiology; Cell Biology; Molecular biology; Protein kinases.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural
  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • Amino Acid Substitution
  • Animals
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / genetics
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2 / metabolism*
  • Cell Line
  • Drosophila Proteins / genetics
  • Drosophila Proteins / metabolism*
  • Drosophila melanogaster
  • Humans
  • Mice
  • Mice, Knockout
  • Microfilament Proteins / genetics
  • Microfilament Proteins / metabolism*
  • Mixed Function Oxygenases / genetics
  • Mixed Function Oxygenases / metabolism*
  • Mutation, Missense*
  • Myocardium / enzymology*
  • Myocardium / pathology
  • Myocytes, Cardiac / enzymology*
  • Myocytes, Cardiac / pathology
  • Oxidation-Reduction
  • Tachycardia, Ventricular / enzymology*
  • Tachycardia, Ventricular / genetics
  • Tachycardia, Ventricular / pathology

Substances

  • Drosophila Proteins
  • Microfilament Proteins
  • MICAL1 protein, human
  • Mical1 protein, mouse
  • Mixed Function Oxygenases
  • Calcium-Calmodulin-Dependent Protein Kinase Type 2

Supplementary concepts

  • Polymorphic catecholergic ventricular tachycardia