DRP1 promotes lactate utilization in KRAS-mutant non-small-cell lung cancer cells

Cancer Sci. 2020 Oct;111(10):3588-3599. doi: 10.1111/cas.14603. Epub 2020 Aug 27.

Abstract

Metabolic alterations are well documented in various cancers. Non-small-cell lung cancers (NSCLCs) preferentially use lactate as the primary carbon source, but the underlying mechanisms are not well understood. We developed a lactate-dependent cell proliferation assay and found that dynamin-related protein (DRP1), which is highly expressed in KRAS-mutant NSCLC, is required for tumor cells to proliferate and uses lactate as fuel, demonstrating the critical role of DRP1 in the metabolic reprogramming of NSCLC. Metabolic and transcriptional profiling suggests that DRP1 orchestrates a supportive metabolic network to promote lactate utilization and redox homeostasis in lung cancer cells. DRP1 suppresses the production of reactive oxygen species (ROS) and protects cells against oxidative damage by enhancing lactate utilization. Moreover, targeting DRP1 not only reduces HSP90 expression but also enhances ROS-induced HSP90 cleavage, thus inhibiting activation of mitogen activated protein kinase and PI3K pathways and leading to suppressed lactate utilization and increased ROS-induced cell death. Taken together, these results suggest that DRP1 is a crucial regulator of lactate metabolism and redox homeostasis in KRAS-mutant lung cancer, and that targeting lactate utilization by modulating DRP1 activity might be an effective treatment for lung cancer.

Keywords: DRP1; KRAS mutation; cancer metabolism; lactate; lung cancer.

MeSH terms

  • A549 Cells
  • Apoptosis / physiology
  • Carcinoma, Non-Small-Cell Lung / metabolism*
  • Cell Death
  • Cell Line, Tumor
  • Cell Proliferation / physiology
  • Dynamins / metabolism*
  • Gene Expression Regulation, Neoplastic / physiology
  • Humans
  • Lactic Acid / metabolism*
  • Lung Neoplasms / metabolism*
  • Mitogen-Activated Protein Kinases
  • Mutation / genetics
  • Oxidation-Reduction
  • Phosphatidylinositol 3-Kinases / metabolism
  • Proto-Oncogene Proteins p21(ras) / genetics
  • Proto-Oncogene Proteins p21(ras) / metabolism*
  • Reactive Oxygen Species / metabolism
  • Signal Transduction / physiology

Substances

  • KRAS protein, human
  • Reactive Oxygen Species
  • Lactic Acid
  • Mitogen-Activated Protein Kinases
  • Proto-Oncogene Proteins p21(ras)
  • DNM1L protein, human
  • Dynamins