Abnormal patterns of insulin secretion in non-insulin-dependent diabetes mellitus

N Engl J Med. 1988 May 12;318(19):1231-9. doi: 10.1056/NEJM198805123181903.

Abstract

To determine whether non-insulin-dependent diabetes is associated with specific alterations in the pattern of insulin secretion, we studied 16 patients with untreated diabetes and 14 matched controls. The rates of insulin secretion were calculated from measurements of peripheral C-peptide in blood samples taken at 15- to 20-minute intervals during a 24-hour period in which the subjects ate three mixed meals. Incremental responses of insulin secretion to meals were significantly lower in the diabetic patients (P less than 0.005), and the increases and decreases in insulin secretion after meals were more sluggish. These disruptions in secretory response were more marked after dinner than after breakfast, and a clear secretory response to dinner often could not be identified. Both the control and diabetic subjects secreted insulin in a series of discrete pulses. In the controls, a total of seven to eight pulses were identified in the period from 9 a.m. to 11 p.m., including the three post-meal periods (an average frequency of one pulse per 105 to 120 minutes), and two to four pulses were identified in the remaining 10 hours. The number of pulses in the patients and controls did not differ significantly. However, in the patients, the pulses after meals had a smaller amplitude (P less than 0.03) and were less frequently concomitant with a glucose pulse (54.7 +/- 4.9 vs. 82.2 +/- 5.0, P less than 0.001). Pulses also appeared less regularly in the patients. During glucose clamping to produce hyperglycemia (glucose level, 16.7 mmol per liter [300 mg per deciliter]), the diabetic subjects secreted, on the average, 70 percent less insulin than matched controls (P less than 0.001). These data suggest that profound alterations in the amount and temporal organization of stimulated insulin secretion may be important in the pathophysiology of beta-cell dysfunction in diabetes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Blood Glucose / analysis
  • C-Peptide / blood
  • Diabetes Mellitus, Type 2 / physiopathology*
  • Eating
  • Female
  • Humans
  • Insulin / metabolism*
  • Insulin Secretion
  • Kinetics
  • Male
  • Middle Aged
  • Pulsatile Flow

Substances

  • Blood Glucose
  • C-Peptide
  • Insulin