The Ubp3/Bre5 deubiquitylation complex modulates COPII vesicle formation

Traffic. 2020 Nov;21(11):702-711. doi: 10.1111/tra.12766. Epub 2020 Oct 20.

Abstract

The appropriate delivery of secretory proteins to the correct subcellular destination is an essential cellular process. In the endoplasmic reticulum (ER), secretory proteins are captured into COPII vesicles that generally exclude ER resident proteins and misfolded proteins. We previously characterized a collection of yeast mutants that fail to enforce this sorting stringency and improperly secrete the ER chaperone, Kar2 (Copic et al., Genetics 2009). Here, we used the emp24Δ mutant strain that secretes Kar2 to identify candidate proteins that might regulate ER export, reasoning that loss of regulatory proteins would restore sorting stringency. We find that loss of the deubiquitylation complex Ubp3/Bre5 reverses all of the known phenotypes of the emp24Δ mutant, and similarly reverses Kar2 secretion of many other ER retention mutants. Based on a combination of genetic interactions and live cell imaging, we conclude that Ubp3 and Bre5 modulate COPII coat assembly at ER exit sites. Therefore, we propose that Ubp3/Bre5 influences the rate of vesicle formation from the ER that in turn can impact ER quality control events.

Keywords: Bre5; COPII; ER export quality control; Kar2; Ubp3.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • COP-Coated Vesicles* / metabolism
  • Endopeptidases / metabolism
  • Endoplasmic Reticulum / metabolism
  • Protein Transport
  • Proteins / metabolism
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism

Substances

  • Proteins
  • Saccharomyces cerevisiae Proteins
  • Endopeptidases
  • UBP3 protein, S cerevisiae