Randomization to Omega-3 Fatty Acid Supplementation and Endothelial Function in COPD: The COD-Fish Randomized Controlled Trial

Chronic Obstr Pulm Dis. 2021 Jan;8(1):41-53. doi: 10.15326/jcopdf.8.1.2020.0132.

Abstract

Rationale: Studies suggest a pathogenic role of endothelial dysfunction in chronic obstructive lung disease (COPD). Omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation improves endothelial function in other diseases but has not been examined in COPD.

Objective: We hypothesized that n-3 PUFA supplementation would improve systemic endothelial function in COPD. We performed a pilot randomized, placebo-controlled, double-blind, phase 2 superiority trial (NCT00835289).

Methods: Adults with moderate and severe stable COPD (79% with emphysema on computed tomography [CT]) were randomized to high-dose fish oil capsules or placebo daily for 6 months. The primary endpoint was percentage change in brachial artery flow-mediated dilation (FMD) from baseline to 6 months. Secondary endpoints included peripheral arterial tonometry, endothelial microparticles (EMPs), 6-minute walk distance, respiratory symptoms, and pulmonary function.

Results: Thirty-three of 40 randomized participants completed all measurements. Change in FMD after 6 months did not differ between the fish oil and placebo arms (-1.1%, 95% CI -5.0-2.9, p=0.59). CD31+ EMPs increased in the fish oil arm (0.9%, 95% CI 0.1-1.7, p=0.04). More participants in the fish oil arm reported at least a 4-point improvement in the St George's Respiratory Questionnaire (SGRQ) compared to placebo (8 versus 1; p=0.01). There were no significant changes in other secondary endpoints. There were 4 serious adverse events determined to be unrelated to the study (3 in the fish oil arm and 1 in the placebo arm).

Conclusion: Randomization to n-3 PUFAs for 6 months did not change systemic endothelial function in COPD. Changes in EMPs and SGRQ suggest n-3 PUFAs might have biologic and clinical effects that warrant further investigation.

Keywords: emphysema; endothelium; fatty acid; obstructive lung disease.

Associated data

  • ClinicalTrials.gov/NCT00835289