In vivo RyR1 reduction in muscle triggers a core-like myopathy

Acta Neuropathol Commun. 2020 Nov 11;8(1):192. doi: 10.1186/s40478-020-01068-4.

Abstract

Mutations in the RYR1 gene, encoding the skeletal muscle calcium channel RyR1, lead to congenital myopathies, through expression of a channel with abnormal permeability and/or in reduced amount, but the direct functional whole organism consequences of exclusive reduction in RyR1 amount have never been studied. We have developed and characterized a mouse model with inducible muscle specific RYR1 deletion. Tamoxifen-induced recombination in the RYR1 gene at adult age resulted in a progressive reduction in the protein amount reaching a stable level of 50% of the initial amount, and was associated with a progressive muscle weakness and atrophy. Measurement of calcium fluxes in isolated muscle fibers demonstrated a reduction in the amplitude of RyR1-related calcium release mirroring the reduction in the protein amount. Alterations in the muscle structure were observed, with fibers atrophy, abnormal mitochondria distribution and membrane remodeling. An increase in the expression level of many proteins was observed, as well as an inhibition of the autophagy process. This model demonstrates that RyR1 reduction is sufficient to recapitulate most features of Central Core Disease, and accordingly similar alterations were observed in muscle biopsies from Dusty Core Disease patients (a subtype of Central Core Disease), pointing to common pathophysiological mechanisms related to RyR1 reduction.

Keywords: Calcium; Central core disease; Congenital myopathies; Dusty core disease; Excitation–contraction coupling; Mouse model; Ryanodine receptor; Skeletal muscle.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / metabolism
  • Disease Models, Animal
  • Gene Knockdown Techniques
  • Mice
  • Mice, Transgenic
  • Mitochondria, Muscle / pathology
  • Muscle Fibers, Skeletal / metabolism
  • Muscle Fibers, Skeletal / pathology
  • Muscle Weakness / genetics*
  • Muscle Weakness / metabolism
  • Muscle Weakness / pathology
  • Muscle, Skeletal / metabolism*
  • Muscle, Skeletal / pathology
  • Muscular Atrophy / genetics*
  • Muscular Atrophy / metabolism
  • Muscular Atrophy / pathology
  • Myopathy, Central Core / genetics*
  • Myopathy, Central Core / metabolism
  • Myopathy, Central Core / pathology
  • Ryanodine Receptor Calcium Release Channel / genetics*
  • Ryanodine Receptor Calcium Release Channel / metabolism

Substances

  • Ryanodine Receptor Calcium Release Channel
  • ryanodine receptor 1, mouse
  • Calcium