Discoveries in structure and physiology of mechanically activated ion channels

Nature. 2020 Nov;587(7835):567-576. doi: 10.1038/s41586-020-2933-1. Epub 2020 Nov 25.

Abstract

The ability to sense physical forces is conserved across all organisms. Cells convert mechanical stimuli into electrical or chemical signals via mechanically activated ion channels. In recent years, the identification of new families of mechanosensitive ion channels-such as PIEZO and OSCA/TMEM63 channels-along with surprising insights into well-studied mechanosensitive channels have driven further developments in the mechanotransduction field. Several well-characterized mechanosensory roles such as touch, blood-pressure sensing and hearing are now linked with primary mechanotransducers. Unanticipated roles of mechanical force sensing continue to be uncovered. Furthermore, high-resolution structures representative of nearly every family of mechanically activated channel described so far have underscored their diversity while advancing our understanding of the biophysical mechanisms of pressure sensing. Here we summarize recent discoveries in the physiology and structures of known mechanically activated ion channel families and discuss their implications for understanding the mechanisms of mechanical force sensing.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Humans
  • Ion Channel Gating / physiology*
  • Ion Channels / chemistry*
  • Ion Channels / metabolism*
  • Ion Channels / physiology
  • Mechanotransduction, Cellular
  • Models, Molecular
  • Protein Structure, Quaternary

Substances

  • Ion Channels