Eggshell Membrane/Gellan Gum Composite Hydrogels with Increased Degradability, Biocompatibility, and Anti-Swelling Properties for Effective Regeneration of Retinal Pigment Epithelium

Polymers (Basel). 2020 Dec 9;12(12):2941. doi: 10.3390/polym12122941.

Abstract

A gellan gum (GG) hydrogel must demonstrate a number of critical qualities-low viscosity, degradability, desirable mechanical properties, anti-swelling properties, and biocompatibility-in order to be regarded as suitable for retinal pigment epithelium (RPE) regeneration. In this study, we investigated whether the application of an eggshell membrane (ESM) to a GG hydrogel improved these critical attributes. The crosslinking of the ESM/GG hydrogels was most effectively reduced, when a 4 w/v% ESM was used, leading to a 40% less viscosity and a 30% higher degradation efficiency than a pure GG hydrogel. The compressive moduli of the ESM/GG hydrogels were maintained, as the smaller pores formed by the addition of the ESM compensated for the slightly weakened mechanical properties of the ESM/GG hydrogels. Meanwhile, due to the relatively low hydrophilicity of ESM, a 4 w/v% ESM enabled an ESM/GG hydrogel to swell 30% less than a pure GG hydrogel. Finally, the similarity in components between the ESM and RPE cells facilitated the proliferation of the latter without any significant cytotoxicity.

Keywords: biocompatibility; degradability; eggshell membrane; gellan gum; injectable hydrogel; retinal pigment epithelium; swelling; tissue engineering.