Single-session label training alters neural competition between objects and faces

J Exp Psychol Hum Percept Perform. 2021 Mar;47(3):387-401. doi: 10.1037/xhp0000889. Epub 2021 Jan 21.

Abstract

The extent to which visuocortical processing is altered when observers learn to categorize novel visual stimuli via labeling is not well understood. The present investigation used steady state visual evoked potential (ssVEP) frequency tagging to test the hypothesis that learning to categorize novel objects via labeling prompts a competitive advantage over concurrently presented stimuli. In the learning (label-training) phase, participants (n = 24) categorized objects according to two different species labels and faces according to gender. A control group (n = 26) viewed the same stimuli without label learning. Before and after learning, faces and objects were superimposed and viewed concurrently while periodically turned on and off at unique temporal rates (5/s or 6/s). The spectral power of the ssVEP at each frequency was projected to an L2 (minimum) norm estimated source space, and competition between faces and objects was compared using permutation-controlled mass univariate t tests. Results showed that, only in the training group, learning to label novel objects led to a competitive advantage over faces across a network of occipito-temporal and fronto-parietal cortical regions. These changes were more pronounced in participants showing more improvement across the label learning phase. Together, the findings support the notion that learning to label novel object categories affects neural competition though recurrent neural interactions in regions commonly associated with visual perception and selective attention. (PsycInfo Database Record (c) 2021 APA, all rights reserved).

MeSH terms

  • Attention
  • Evoked Potentials, Visual*
  • Humans
  • Learning
  • Photic Stimulation
  • Visual Perception*