Effect of mechanistic/mammalian target of rapamycin complex 1 on mitochondrial dynamics during skeletal muscle hypertrophy

Physiol Rep. 2021 Mar;9(5):e14789. doi: 10.14814/phy2.14789.

Abstract

Mechanistic/mammalian target of rapamycin (mTOR) is a central factor of protein synthesis signaling and plays an important role in the resistance training-induced increase in skeletal muscle mass and subsequent skeletal muscle hypertrophy response. In particular, mTOR complex 1 (mTORC1) promotes protein synthesis in ribosomes by activating the downstream effectors, p70S6K and 4EBP1, in skeletal muscle and is highly sensitive to rapamycin, an mTOR inhibitor. Recently, resistance training has also been shown to affect mitochondrial dynamics, which is coupled with mitochondrial function. In skeletal muscle, mitochondria dynamically change their morphology through repeated fusion and fission, which may be key for controlling the quality of skeletal muscle. However, how the mechanisms of mitochondrial dynamics function during hypertrophy in skeletal muscle remains unclear. The aim of this study was to examine the impact of mTOR inhibition on mitochondrial dynamics during skeletal muscle hypertrophy. Consistent with previous studies, functional overload by synergist (gastrocnemius and soleus) ablation-induced progressive hypertrophy (increase in protein synthesis and fiber cross-sectional area) of the plantaris muscle was observed in mice. Moreover, these hypertrophic responses were significantly inhibited by rapamycin administration. Fourteen days of functional overload increased levels of MFN2 and OPA1, which regulate mitochondrial fusion, whereas this enhancement was inhibited by rapamycin administration. Additionally, overload decreased the levels of DRP1, which regulates mitochondrial fission and oxidative phosphorylation, regardless of rapamycin administration. These observations suggest that the relative reduction in mitochondrial function or content is complemented by enhancement of mitochondrial fusion and that this complementary response may be regulated by mTORC1.

Keywords: mTOR signaling; mitochondrial dynamics; skeletal muscle hypertrophy.

MeSH terms

  • Animals
  • Hypertrophy / metabolism*
  • Male
  • Mechanistic Target of Rapamycin Complex 1 / metabolism*
  • Mice
  • Mitochondria / metabolism*
  • Mitochondrial Dynamics / physiology*
  • Protein Biosynthesis / physiology
  • Ribosomal Protein S6 Kinases, 70-kDa / metabolism
  • TOR Serine-Threonine Kinases / metabolism

Substances

  • Mechanistic Target of Rapamycin Complex 1
  • Ribosomal Protein S6 Kinases, 70-kDa
  • TOR Serine-Threonine Kinases