Generation of sub-MHz and spectrally-bright biphotons from hot atomic vapors with a phase mismatch-free scheme

Opt Express. 2021 Feb 1;29(3):4632-4644. doi: 10.1364/OE.415473.

Abstract

We utilized the all-copropagating scheme, which maintains the phase-match condition, in the spontaneous four-wave mixing (SFWM) process to generate biphotons from a hot atomic vapor. The linewidth and spectral brightness of our biphotons surpass those of the biphotons produced with the hot-atom SFWM in the previous works. Moreover, the generation rate of the sub-MHz biphoton source in this work can also compete with those of the sub-MHz biphoton sources of the cold-atom SFWM or cavity-assisted spontaneous parametric down conversion. Here, the biphoton linewidth is tunable for an order of magnitude. As we tuned the linewidth to 610 kHz, the generation rate per linewidth is 1,500 pairs/(s·MHz) and the maximum two-photon correlation function, gs,as(2), of the biphotons is 42. This gs,as(2) violates the Cauchy-Schwarz inequality for classical light by 440 folds, and demonstrates that the biphotons have a high purity. By increasing the pump power by 16 folds, we further enhanced the generation rate per linewidth to 2.3×104 pairs/(s·MHz), while the maximum gs,as(2) became 6.7. In addition, we are able to tune the linewidth down to 290±20 kHz. This is the narrowest linewidth to date among all single-mode biphoton sources of room-temperature and hot media.