LETM1: A Single Entity With Diverse Impact on Mitochondrial Metabolism and Cellular Signaling

Front Physiol. 2021 Mar 18:12:637852. doi: 10.3389/fphys.2021.637852. eCollection 2021.

Abstract

Nearly 2 decades since its discovery as one of the genes responsible for the Wolf-Hirschhorn Syndrome (WHS), the primary function of the leucine-zipper EF-hand containing transmembrane 1 (LETM1) protein in the inner mitochondrial membrane (IMM) or the mechanism by which it regulates mitochondrial Ca2+ handling is unresolved. Meanwhile, LETM1 has been associated with the regulation of fundamental cellular processes, such as development, cellular respiration and metabolism, and apoptosis. This mini-review summarizes the diversity of cellular functions impacted by LETM1 and highlights the multiple roles of LETM1 in health and disease.

Keywords: Wolf-Hirschhorn syndrome; bioenergetics; cancer biology; carboxy-terminal-modulator-protein; cell metabolism; leucine-zipper EF-hand containing transmembrane 1; mitochondrial calcium handling; mitochondrial calcium hydrogen exchanger; mitochondrial potassium hydrogen exchanger.

Publication types

  • Review