The Anaesthetic Biobank of Cerebrospinal fluid: a unique repository for neuroscientific biomarker research

Ann Transl Med. 2021 Mar;9(6):455. doi: 10.21037/atm-20-4498.

Abstract

Background: The pathophysiology of numerous central nervous system disorders remains poorly understood. Biomarker research using cerebrospinal fluid (CSF) is a promising way to illuminate the neurobiology of neuropsychiatric disorders. CSF biomarker studies performed so far generally included patients with neurodegenerative diseases without an adequate control group. The Anaesthetic Biobank of Cerebrospinal fluid (ABC) was established to address this. The aims are to (I) provide healthy-control reference values for CSF-based biomarkers, and (II) to investigate associations between CSF-based candidate biomarkers and neuropsychiatric symptoms.

Methods: In this cross-sectional study, we collect and store CSF and blood from adult patients undergoing spinal anaesthesia for elective surgery. Blood (20.5 mL) is collected during intravenous cannulation and CSF (10 mL) is aspirated prior to intrathecal local anaesthetic injection. A portion of the blood and CSF is sent for routine laboratory analyses, the remaining material is stored at -80 °C. Relevant clinical, surgical and anaesthetic data are registered. A neurological examination and Montreal Cognitive Assessment (MoCA) are performed pre-operatively and a subset of patients fill in questionnaires on somatic and mental health (depression, anxiety and stress).

Results: Four-hundred-fifty patients (58% male; median age: 56 years) have been enrolled in the ABC. The planned spinal anaesthetic procedure was not attempted for various reasons in eleven patients, in fourteen patients the spinal puncture failed and in twelve patients CSF aspiration was unsuccessful. A mean of 9.3 mL CSF was obtained in the remaining 413 of patients. Most patients had a minor medical history and 60% scored in the normal range on the MoCA (median score: 26).

Conclusions: The ABC is an ongoing biobanking project that can contribute to CSF-based biomarker research. The large sample size with constant sampling methods and extensive patient phenotyping provide excellent conditions for future neuroscientific research.

Keywords: Biomarkers; central nervous system; cerebrospinal fluid (CSF); mental disorders; neurosciences.