Permissive effect of GSK3β on profibrogenic plasticity of renal tubular cells in progressive chronic kidney disease

Cell Death Dis. 2021 Apr 30;12(5):432. doi: 10.1038/s41419-021-03709-5.

Abstract

Renal tubular epithelial cells (TECs) play a key role in renal fibrogenesis. After persistent injuries that are beyond self-healing capacity, TECs will dedifferentiate, undergo growth arrest, convert to profibrogenic phenotypes, and resort to maladaptive plasticity that ultimately results in renal fibrosis. Evidence suggests that glycogen synthase kinase (GSK) 3β is centrally implicated in kidney injury. However, its role in renal fibrogenesis is obscure. Analysis of publicly available kidney transcriptome database demonstrated that patients with progressive chronic kidney disease (CKD) exhibited GSK3β overexpression in renal tubulointerstitium, in which the predefined hallmark gene sets implicated in fibrogenesis were remarkably enriched. In vitro, TGF-β1 treatment augmented GSK3β expression in TECs, concomitant with dedifferentiation, cell cycle arrest at G2/M phase, excessive accumulation of extracellular matrix, and overproduction of profibrotic cytokines like PAI-1 and CTGF. All these profibrogenic phenotypes were largely abrogated by GSK3β inhibitors or by ectopic expression of a dominant-negative mutant of GSK3β but reinforced in cells expressing the constitutively active mutant of GSK3β. Mechanistically, GSK3β suppressed, whereas inhibiting GSK3β facilitated, the activity of cAMP response element-binding protein (CREB), which competes for CREB-binding protein, a transcriptional coactivator essential for TGF-β1/Smad signaling pathway to drive TECs profibrogenic plasticity. In vivo, in mice with folic acid-induced progressive CKD, targeting of GSK3β in renal tubules via genetic ablation or by microdose lithium mitigated the profibrogenic plasticity of TEC, concomitant with attenuated interstitial fibrosis and tubular atrophy. Collectively, GSK3β is likely a pragmatic therapeutic target for averting profibrogenic plasticity of TECs and improving renal fibrosis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Culture Techniques
  • Disease Models, Animal
  • Epithelial Cells / metabolism*
  • Glycogen Synthase Kinase 3 beta / metabolism*
  • Humans
  • Kidney Tubules / metabolism*
  • Mice
  • Mice, Knockout
  • Renal Insufficiency, Chronic / physiopathology*
  • Transfection

Substances

  • Glycogen Synthase Kinase 3 beta