Genetic network regulating visual acuity makes limited contribution to visually guided eye emmetropization

Genomics. 2021 Jul;113(4):2780-2792. doi: 10.1016/j.ygeno.2021.06.021. Epub 2021 Jun 18.

Abstract

During postnatal development, the eye undergoes a refinement process whereby optical defocus guides eye growth towards sharp vision in a process of emmetropization. Optical defocus activates a signaling cascade originating in the retina and propagating across the back of the eye to the sclera. Several observations suggest that visual acuity might be important for optical defocus detection and processing in the retina; however, direct experimental evidence supporting or refuting the role of visual acuity in refractive eye development is lacking. Here, we used genome-wide transcriptomics to determine the relative contribution of the retinal genetic network regulating visual acuity to the signaling cascade underlying visually guided eye emmetropization. Our results provide evidence that visual acuity is regulated at the level of molecular signaling in the retina by an extensive genetic network. The genetic network regulating visual acuity makes relatively small contribution to the signaling cascade underlying refractive eye development. This genetic network primarily affects baseline refractive eye development and this influence is primarily facilitated by the biological processes related to melatonin signaling, nitric oxide signaling, phototransduction, synaptic transmission, and dopamine signaling. We also observed that the visual-acuity-related genes associated with the development of human myopia are chiefly involved in light perception and phototransduction. Our results suggest that the visual-acuity-related genetic network primarily contributes to the signaling underlying baseline refractive eye development, whereas its impact on visually guided eye emmetropization is modest.

Keywords: Emmetropization; Gene expression networks; Gene expression profiling; Optical defocus; RNA-seq; Refractive eye development; Signaling pathways; Visual acuity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Gene Regulatory Networks*
  • Humans
  • Myopia* / genetics
  • Refraction, Ocular
  • Retina
  • Visual Acuity