Development of novel projection-type imaging mass spectrometer

Rev Sci Instrum. 2021 May 1;92(5):053706. doi: 10.1063/5.0037370.

Abstract

We developed a novel imaging mass spectrometer based on our accumulating technology for projection-type imaging mass spectrometry, the simulation of an accurate ion trajectory, and the theory for ion optics. The newly developed apparatus yields high spatial resolution with a substantially shorter image-acquisition time compared with conventional scanning-type imaging mass spectrometers. In order to maintain a high mass resolution, a multi-turn time-of-flight mass spectrometer is combined with post-extraction differential acceleration methods. Consequently, a mass resolution of m/Δm ∼ 10 000 and a spatial resolution of 1 μm were achieved simultaneously in this study. Application of our newly established apparatus to biological samples accomplished successful imaging mass spectrometry by exhibiting an organ-specific distribution of endogenous ions as well as a localized distribution of exogenously applied ions with an ultra-high spatial resolution image in the size of 18.5 megapixels.