High-Throughput UHPLC/MS/MS-Based Metabolic Profiling Using a Vacuum Jacketed Column

Anal Chem. 2021 Aug 3;93(30):10644-10652. doi: 10.1021/acs.analchem.1c01982. Epub 2021 Jul 19.

Abstract

In UHPLC, frictional heating from the eluent flowing through the column at pressures of ca. 10-15 Kpsi causes radial diffusion via temperature differences between the center of the column and its walls. Longitudinal dispersion also occurs due to temperature gradients between the inlet and outlet. These effects cause band broadening but can be mitigated via a combination of vacuum jacketed stainless steel tubing, reduced column end nut mass, and a constant temperature in the column from heating the inlet fitting. Here, vacuum jacketed column (VJC) technology, employing a novel column housing located on the source of the mass spectrometer and minimized tubing from the column outlet to the electrospray probe, was applied to profiling metabolites in urine. For a 75 s reversed-phase gradient separation, the average peak widths for endogenous compounds in urine were 1.2 and 0.6 s for conventional LC/MS and VJC systems, respectively. The peak tailing factor was reduced from 1.25 to 1.13 when using the VJC system compared to conventional UHPLC, and the peak capacity increased from 65 to 120, with a 25% increase in features detected in urine. The increased resolving power of the VJC system reduced co-elution, simplifying MS and MS/MS spectra, providing a more confident metabolite identification. The increased LC performance also gave more intense MS peaks, with a 10-120% increase in response, improving the quality of the MS data and detection limits. Reducing the LC gradient duration to 37 s gave peak widths of ca. 0.4 s and a peak capacity of 84.

MeSH terms

  • Chromatography, High Pressure Liquid
  • Chromatography, Liquid
  • Diffusion
  • Tandem Mass Spectrometry*
  • Vacuum