Collagen Organization Does Not Influence T-Cell Distribution in Stroma of Human Pancreatic Cancer

Cancers (Basel). 2021 Jul 21;13(15):3648. doi: 10.3390/cancers13153648.

Abstract

The dominant intrastromal T-cell infiltration in pancreatic cancer is mainly caused by the contact guidance through the excessive desmoplastic reaction and could represent one of the obstacles to an effective immune response in this tumor type. This study analyzed the collagen organization in normal and malignant pancreatic tissues as well as its influence on T-cell distribution in pancreatic cancer. Human pancreatic tissue was analyzed using immunofluorescence staining and multiphoton and SHG microscopy supported by multistep image processing. The influence of collagen alignment on activated T-cells was studied using 3D matrices and time-lapse microscopy. It was found that the stroma of malignant and normal pancreatic tissues was characterized by complex individual organization. T-cells were heterogeneously distributed in pancreatic cancer and there was no relationship between T-cell distribution and collagen organization. There was a difference in the angular orientation of collagen alignment in the peritumoral and tumor-cell-distant stroma regions in the pancreatic ductal adenocarcinoma tissue, but there was no correlation in the T-cell densities between these regions. The grade of collagen alignment did not influence the directionality of T-cell migration in the 3D collagen matrix. It can be concluded that differences in collagen organization do not change the spatial orientation of T-cell migration or influence stromal T-cell distribution in human pancreatic cancer. The results of the present study do not support the rationale of remodeling of stroma collagen organization for improvement of T-cell-tumor cell contact in pancreatic ductal adenocarcinoma.

Keywords: T-cell infiltration; chemokines; collagen organization; human pancreatic cancer; tumor stroma.