Engineered protein-small molecule conjugates empower selective enzyme inhibition

Cell Chem Biol. 2022 Feb 17;29(2):328-338.e4. doi: 10.1016/j.chembiol.2021.07.013. Epub 2021 Aug 6.

Abstract

Potent, specific ligands drive precision medicine and fundamental biology. Proteins, peptides, and small molecules constitute effective ligand classes. Yet greater molecular diversity would aid the pursuit of ligands to elicit precise biological activity against challenging targets. We demonstrate a platform to discover protein-small molecule (PriSM) hybrids to combine unique pharmacophore activities and shapes with constrained, efficiently engineerable proteins. In this platform, a fibronectin protein library is displayed on yeast with a single cysteine coupled to acetazolamide via a maleimide-poly(ethylene glycol) linker. Magnetic and flow cytometric sorts enrich specific binders to carbonic anhydrase isoforms. Isolated PriSMs exhibit potent, specific inhibition of carbonic anhydrase isoforms with efficacy superior to that of acetazolamide or protein alone, including an 80-fold specificity increase and 9-fold potency gain. PriSMs are engineered with multiple linker lengths, protein conjugation sites, and sequences against two different isoforms, which reveal platform flexibility and impacts of molecular designs. PriSMs advance the molecular diversity of efficiently engineerable ligands.

Keywords: hybrid; ligand; pharmacophore; protein engineering; protein scaffold; yeast display.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbonic Anhydrase Inhibitors / chemistry
  • Carbonic Anhydrase Inhibitors / pharmacology*
  • Carbonic Anhydrases / metabolism*
  • Fibronectins / chemistry*
  • Humans
  • Isoenzymes / antagonists & inhibitors
  • Isoenzymes / metabolism
  • Protein Engineering*
  • Saccharomyces cerevisiae / cytology
  • Small Molecule Libraries / chemistry
  • Small Molecule Libraries / pharmacology*

Substances

  • Carbonic Anhydrase Inhibitors
  • Fibronectins
  • Isoenzymes
  • Small Molecule Libraries
  • Carbonic Anhydrases