Effect of using amino acids in the freeze-drying of siRNA lipoplexes on gene knockdown in cells after reverse transfection

Biomed Rep. 2021 Sep;15(3):72. doi: 10.3892/br.2021.1448. Epub 2021 Jul 12.

Abstract

Recently, small interfering RNA (siRNA)/cationic liposome complexes (siRNA lipoplexes) have become a crucial research tool for studying gene function. Easy and reliable siRNA transfection with a large set of siRNAs is required for the successful screening of gene function. Reverse (Rev)-transfection with freeze-dried siRNA lipoplexes is validated for siRNA transfection with a large set of siRNAs in a multi-well plate. In our previous study, it was shown that Rev-transfection with siRNA lipoplexes freeze-dried in disaccharides or trisaccharides resulted in long-term stability with a high level of gene-knockdown activity. In the present study, the effects of amino acids used as cryoprotectants in the freeze-drying of siRNA lipoplexes on gene knockdown via Rev-transfection were assessed. A total of 15 types of amino acids were used to prepare freeze-dried siRNA lipoplexes, and it was found that the freeze-drying of siRNA lipoplexes with amino acid concentrations >100 mM strongly suppressed targeted gene expression regardless of the amino acid type; however, some amino acids strongly upregulated or downregulated gene expression in the cells transfected with negative control siRNA. Amongst the amino acids tested, the presence of asparagine showed specific gene-knockdown activity, forming large cakes after freeze-drying and retaining a favorable siRNA lipoplex size after rehydration. These findings provide valuable information regarding amino acids as cryoprotectants for Rev-transfection using freeze-dried siRNA lipoplexes for the efficient delivery of siRNA into cells.

Keywords: amino acids; cationic liposome; freeze-drying; reverse transfection; small interfering RNA.

Grants and funding

Funding: No funding was received.