Synthetic Biology in Plants, a Boon for Coming Decades

Mol Biotechnol. 2021 Dec;63(12):1138-1154. doi: 10.1007/s12033-021-00386-9. Epub 2021 Aug 21.

Abstract

Recently an enormous expansion of knowledge is seen in various disciplines of science. This surge of information has given rise to concept of interdisciplinary fields, which has resulted in emergence of newer research domains, one of them is 'Synthetic Biology' (SynBio). It captures basics from core biology and integrates it with concepts from the other areas of study such as chemical, electrical, and computational sciences. The essence of synthetic biology is to rewire, re-program, and re-create natural biological pathways, which are carried through genetic circuits. A genetic circuit is a functional assembly of basic biological entities (DNA, RNA, proteins), created using typical design, built, and test cycles. These circuits allow scientists to engineer nearly all biological systems for various useful purposes. The development of sophisticated molecular tools, techniques, genomic programs, and ease of nucleic acid synthesis have further fueled several innovative application of synthetic biology in areas like molecular medicines, pharmaceuticals, biofuels, drug discovery, metabolomics, developing plant biosensors, utilization of prokaryotic systems for metabolite production, and CRISPR/Cas9 in the crop improvement. These applications have largely been dominated by utilization of prokaryotic systems. However, newer researches have indicated positive growth of SynBio for the eukaryotic systems as well. This paper explores advances of synthetic biology in the plant field by elaborating on its core components and potential applications. Here, we have given a comprehensive idea of designing, development, and utilization of synthetic biology in the improvement of the present research state of plant system.

Keywords: Biosensors; CRISPR/Cas9; Computational biology; Metabolic engineering; Synthetic biology.

Publication types

  • Review

MeSH terms

  • CRISPR-Cas Systems
  • Metabolic Engineering
  • Plants, Genetically Modified / growth & development*
  • Plants, Genetically Modified / metabolism
  • Synthetic Biology / methods*