Quantitative Measurement of Multiprotein Nanoparticle Interactions Using NMR Spectroscopy

Anal Chem. 2021 Sep 7;93(35):11982-11990. doi: 10.1021/acs.analchem.1c01911. Epub 2021 Aug 25.

Abstract

An effective intensity-based reference is a cornerstone for quantitative nuclear magnetic resonance (NMR) studies, as the molecular concentration is encoded in its signal. In theory, NMR is well suited for the measurement of competitive protein adsorption onto nanoparticle (NP) surfaces, but current referencing systems are not optimized for multidimensional experiments. Presented herein is a simple and novel referencing system using 15N tryptophan (Trp) as an external reference for 1H-15N 2D NMR experiments. The referencing system is validated by the determination of the binding capacity of a single protein onto gold NPs. Then, the Trp reference is applied to protein mixtures, and signals from each protein are accurately quantified. All results are consistent with previous studies, but with substantially higher precision, indicating that the Trp reference can accurately calibrate the residue peak intensities and reduce systematic errors. Finally, the proposed Trp reference is used to kinetically monitor in situ and in real time the competitive adsorption of different proteins. As a challenging test case, we successfully apply our approach to a mixture of protein variants differing by only a single residue. Our results show that the binding of one protein will affect the binding of the other, leading to an altered NP corona composition. This work therefore highlights the importance of studying protein-NP interactions in protein mixtures in situ, and the referencing system developed here enables the quantification of binding kinetics and thermodynamics of multiple proteins using various 1H-15N 2D NMR techniques.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adsorption
  • Magnetic Resonance Spectroscopy
  • Nanoparticles*
  • Proteins*
  • Thermodynamics

Substances

  • Proteins