DAB2IP decreases cell growth and migration and increases sensitivity to chemotherapeutic drugs in colorectal cancer

Ann Transl Med. 2021 Aug;9(16):1317. doi: 10.21037/atm-21-3474.

Abstract

Background: Colorectal cancer (CRC) is one of the most common cancers worldwide with high rates of invasiveness and mortality. DAB2IP (DOC2/DAB2 interactive protein) is a member of the RAS-GTPase-activating protein (RAS-GAP) family that shows a suppressive effect on cancer progression, is downregulated in several cancers. However, the role of DAB2IP in CRC remains elusive.

Methods: Expression of DAB2IP was evaluated in human CRC tissues using immunohistochemistry (IHC), quantitative real-time reverse transcription PCR (qRT-PCR) and immunoblotting. Knockdown and overexpression of DAB2IP in CRC cells were achieved by transfecting siRNAs and DAB2IP expression vectors and assessed by qRT-PCR and immunoblotting. CCK-8, colony formation, wound-healing, and transwell assays were used to evaluate CRC cell growth, migration, and sensitivity to chemotherapeutic drugs. The cell cycle was analyzed by propidium iodide (PI) staining and flow cytometry. Cell apoptosis was evaluated by Annexin V-DAPI double staining and flow cytometry. The effect of DAB2IP overexpression on tumor formation was explored by an in vivo tumorigenesis assay. Finally, immunoblotting was performed to examine the molecules related to the action of DAB2IP in CRC.

Results: Compared with para-cancer tissues, there was a marked decrease of DAB2IP expression in surgically excised CRCs. In cultured CRC cells, enforced expression of DAB2IP inhibited cell growth and migration and sensitized the cells to DNA-acting cisplatin, oxaliplatin, and doxorubicin but not 5-fluorouracil (5-FU). In contrast, knockdown of DAB2IP produced the opposite effect. Moreover, DAB2IP overexpression hindered tumor growth in vivo. We further found that DAB2IP regulated the expression of cell growth, epithelial-mesenchymal transition (EMT), and apoptosis-related proteins in CRC cells and inhibited the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK).

Conclusions: Expression of DAB2IP inhibited CRC cell growth and migration and sensitized CRC cells to chemotherapeutic drugs. Inhibition of the phosphorylation of AKT and ERK is associated with the effects of DAB2IP expression. Restoration of DAB2IP expression may be a novel target for treating CRC.

Keywords: Colorectal cancer (CRC); DAB2IP; cell growth; cell migration; chemosensitivity.