Voltage sensor movements of CaV1.1 during an action potential in skeletal muscle fibers

Proc Natl Acad Sci U S A. 2021 Oct 5;118(40):e2026116118. doi: 10.1073/pnas.2026116118.

Abstract

The skeletal muscle L-type Ca2+ channel (CaV1.1) works primarily as a voltage sensor for skeletal muscle action potential (AP)-evoked Ca2+ release. CaV1.1 contains four distinct voltage-sensing domains (VSDs), yet the contribution of each VSD to AP-evoked Ca2+ release remains unknown. To investigate the role of VSDs in excitation-contraction coupling (ECC), we encoded cysteine substitutions on each S4 voltage-sensing segment of CaV1.1, expressed each construct via in vivo gene transfer electroporation, and used in cellulo AP fluorometry to track the movement of each CaV1.1 VSD in skeletal muscle fibers. We first provide electrical measurements of CaV1.1 voltage sensor charge movement in response to an AP waveform. Then we characterize the fluorescently labeled channels' VSD fluorescence signal responses to an AP and compare them with the waveforms of the electrically measured charge movement, the optically measured free myoplasmic Ca2+, and the calculated rate of Ca2+ release from the sarcoplasmic reticulum for an AP, the physiological signal for skeletal muscle fiber activation. A considerable fraction of the fluorescence signal for each VSD occurred after the time of peak Ca2+ release, and even more occurred after the earlier peak of electrically measured charge movement during an AP, and thus could not directly reflect activation of Ca2+ release or charge movement, respectively. However, a sizable fraction of the fluorometric signals for VSDs I, II, and IV, but not VSDIII, overlap the rising phase of charge moved, and even more for Ca2+ release, and thus could be involved in voltage sensor rearrangements or Ca2+ release activation.

Keywords: CaV1.1; action potential; excitation–contraction coupling; skeletal muscle; voltage sensor domain.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Action Potentials / physiology*
  • Amino Acid Sequence
  • Animals
  • Calcium / metabolism
  • Calcium Channels, L-Type / chemistry
  • Calcium Channels, L-Type / physiology*
  • Excitation Contraction Coupling
  • Ion Channel Gating
  • Mice
  • Muscle Fibers, Skeletal / physiology*
  • Rabbits
  • Sarcoplasmic Reticulum / metabolism

Substances

  • Calcium Channels, L-Type
  • Calcium