Circ_0134944 inhibits osteogenesis through miR-127-5p/PDX1/SPHK1 pathway

Regen Ther. 2021 Sep 29:18:391-400. doi: 10.1016/j.reth.2021.09.004. eCollection 2021 Dec.

Abstract

Introduction: Osteoporosis, a common skeletal disorder mainly affecting postmenopausal women, is characterized by the imbalance between osteogenesis and osteoclastogenesis. Circ_0134944 has been recently found to be upregulated in postmenopausal osteoporosis (PMOP) patients. However, its role in osteogenesis remains unknown. Here we aimed to explore the role of circ_0134944 in osteogenesis and reveal the underlying mechanism.

Methods: qRT-PCR was used to determine the expression of circ_0134944, miR-127-5p, PDX1 and SPHK1 in the blood mononuclear cells (BMCs) of PMOP patients. Bone marrow mesenchymal stem cells (BMSCs) were used as the cellular model. Western blotting and qRT-PCR were used to determine the expression of osteogenesis-related genes (Runx2, OPN, OCN). ALP and Alizarin Red S staining were performed to evaluate osteogenic differentiation. The interactions between circ_0134944 and miR-127-5p, miR-127-5p and PDX1, PDX1 and SPHK1 were determined by dual-luciferase reporter and ChIP assay.

Results: Circ_0134944, PDX1 and SPHK1 were upregulated while miR-127-5p was downregulated in PMOP patients. Enhanced expression of circ_0134944 suppressed osteogenesis, which was then reversed by miR-127-5p overexpression. The binding between circ_0134944 and miR-127-5p, PDX1 and miR-127-5p were confirmed by dual-luciferase reporter assay. Moreover, PDX1 was enriched in the promoter region of SPHK1, and SPHK1 overexpression prevented the promotion of osteogenesis induced by miR-127-5p overexpression.

Conclusions: Taken together, these results demonstrate that circ_0134944 inhibit osteogenesis via miR-127-5p/PDX1/SPHK1 axis. Thus, the present study offered evidence that circ_0134944/miR-127-5p/PDX1/SPHK1 axis could be a potential therapeutic target for PMOP.

Keywords: Osteogenesis; PDX1; SPHK1; circ_0134944; miR-127-5p.