Physical-Chemical Characterization of Bilayer Membranes Derived from (±) α-Tocopherol-Based Gemini Lipids and Their Interaction with Phosphatidylcholine Bilayers and Lipoplex Formation with Plasmid DNA

Langmuir. 2022 Jan 11;38(1):36-49. doi: 10.1021/acs.langmuir.1c01039. Epub 2021 Dec 25.

Abstract

Membrane formation and aggregation properties of two series of (±) α-tocopherol-based cationic gemini lipids without and with hydroxyl functionalities at the headgroup region (TnS n = 3, 4, 5, 6, 8, and 12; THnS n = 4, 5, 6, 8, and 12) with varying polymethylene spacer lengths were investigated extensively while comparing with the corresponding properties of the monomeric counterparts (TM and THM). Liposomal suspensions of each cationic lipid were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), zeta potential measurements, and small-angle X-ray diffraction studies. The length of the spacer and the presence of hydroxyl functionalities at the headgroup region strongly contribute to the aggregation behavior of these gemini lipids in water. The interaction of each tocopherol lipid with a model phospholipid, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC)-derived vesicles, was thoroughly examined by differential scanning calorimetry (DSC) and 1,6-diphenyl-1,3,5-hexatriene (DPH)-doped fluorescence anisotropy measurements. The binding efficiency of the cationic tocopherol liposomes with plasmid DNA (pDNA) was followed by an ethidium bromide (EB) exclusion assay and zeta potential measurements, whereas negatively charged micellar sodium dodecyl sulfate (SDS)-mediated release of the pDNA from various preformed pDNA-liposomal complexes (lipoplex) was studied by an ethidium bromide (EB) reintercalation assay. The structural transformation of pDNA upon complexation with liposome was characterized using circular dichroism (CD) spectroscopic measurements. Gemini lipid-pDNA interactions depend on both the presence of hydroxyl functionalities at the headgroups and the length of the spacer chain between the headgroups. Succinctly, we performed a detailed physical-chemical characterization of the membranes formed from cationic monomeric and gemini lipids bearing tocopherol as their hydrophobic backbone and describe the role of inserting the -OH group at the headgroup of such lipids.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cations
  • DNA
  • Lecithins
  • Liposomes*
  • Phospholipids
  • Plasmids
  • Transfection
  • alpha-Tocopherol*

Substances

  • Cations
  • Lecithins
  • Liposomes
  • Phospholipids
  • DNA
  • alpha-Tocopherol