Regulation of immune receptor kinase plasma membrane nanoscale organization by a plant peptide hormone and its receptors

Elife. 2022 Jan 6:11:e74162. doi: 10.7554/eLife.74162.

Abstract

Spatial partitioning is a propensity of biological systems orchestrating cell activities in space and time. The dynamic regulation of plasma membrane nano-environments has recently emerged as a key fundamental aspect of plant signaling, but the molecular components governing it are still mostly unclear. The receptor kinase FERONIA (FER) controls ligand-induced complex formation of the immune receptor kinase FLAGELLIN SENSING 2 (FLS2) with its co-receptor BRASSINOSTEROID-INSENSITIVE 1-ASSOCIATED KINASE 1 (BAK1), and perception of the endogenous peptide hormone RAPID ALKALANIZATION FACTOR 23 (RALF23) by FER inhibits immunity. Here, we show that FER regulates the plasma membrane nanoscale organization of FLS2 and BAK1. Our study demonstrates that akin to FER, leucine-rich repeat (LRR) extensin proteins (LRXs) contribute to RALF23 responsiveness and regulate BAK1 nanoscale organization and immune signaling. Furthermore, RALF23 perception leads to rapid modification of FLS2 and BAK1 nanoscale organization, and its inhibitory activity on immune signaling relies on FER kinase activity. Our results suggest that perception of RALF peptides by FER and LRXs actively modulates plasma membrane nanoscale organization to regulate cell surface signaling by other ligand-binding receptor kinases.

Keywords: A. thaliana; cell biology; innate immunity; nanoscale organization; peptide hormones; plant biology; plasma membrane; receptor kinase; signaling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis / genetics*
  • Arabidopsis / metabolism
  • Arabidopsis Proteins / genetics*
  • Arabidopsis Proteins / metabolism
  • Phosphotransferases / genetics*
  • Phosphotransferases / metabolism
  • Plant Immunity / genetics*
  • Protein Kinases / genetics*
  • Protein Kinases / metabolism
  • Protein Serine-Threonine Kinases / genetics*
  • Protein Serine-Threonine Kinases / metabolism

Substances

  • Arabidopsis Proteins
  • FERONIA receptor like kinase, Arabidopsis
  • Phosphotransferases
  • Protein Kinases
  • BAK1 protein, Arabidopsis
  • FLS2 protein, Arabidopsis
  • Protein Serine-Threonine Kinases

Grants and funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.