Disrupted autophagy and neuronal dysfunction in C. elegans knockin models of FUS amyotrophic lateral sclerosis

Cell Rep. 2022 Jan 25;38(4):110195. doi: 10.1016/j.celrep.2021.110195.

Abstract

How mutations in FUS lead to neuronal dysfunction in amyotrophic lateral sclerosis (ALS) patients remains unclear. To examine mechanisms underlying ALS FUS dysfunction, we generate C. elegans knockin models using CRISPR-Cas9-mediated genome editing, creating R524S and P525L ALS FUS models. Although FUS inclusions are not detected, ALS FUS animals show defective neuromuscular function and locomotion under stress. Unlike animals lacking the endogenous FUS ortholog, ALS FUS animals have impaired neuronal autophagy and increased SQST-1 accumulation in motor neurons. Loss of sqst-1, the C. elegans ortholog for ALS-linked, autophagy adaptor protein SQSTM1/p62, suppresses both neuromuscular and stress-induced locomotion defects in ALS FUS animals, but does not suppress neuronal autophagy defects. Therefore, autophagy dysfunction is upstream of, and not dependent on, SQSTM1 function in ALS FUS pathogenesis. Combined, our findings demonstrate that autophagy dysfunction likely contributes to protein homeostasis and neuromuscular defects in ALS FUS knockin animals.

Keywords: ALS; C. elegans; FUS; autophagy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amyotrophic Lateral Sclerosis / genetics*
  • Amyotrophic Lateral Sclerosis / pathology
  • Amyotrophic Lateral Sclerosis / physiopathology*
  • Animals
  • Autophagy / physiology*
  • Caenorhabditis elegans
  • Disease Models, Animal
  • Gene Knock-In Techniques
  • Motor Neurons / pathology*
  • Mutation
  • RNA-Binding Protein FUS / genetics*

Substances

  • RNA-Binding Protein FUS