Quantifying the Quality of Web-Based Health Information on Student Health Center Websites Using a Software Tool: Design and Development Study

JMIR Form Res. 2022 Feb 2;6(2):e32360. doi: 10.2196/32360.

Abstract

Background: The internet has become a major source of health information, especially for adolescents and young adults. Unfortunately, inaccurate, incomplete, or outdated health information is widespread on the web. Often adolescents and young adults turn to authoritative websites such as the student health center (SHC) website of the university they attend to obtain reliable health information. Although most on-campus SHC clinics comply with the American College Health Association standards, their websites are not subject to any standards or code of conduct. In the absence of quality standards or guidelines, monitoring and compliance processes do not exist for SHC websites. Thus, there is no oversight of the health information published on SHC websites by any central governing body.

Objective: The aim of this study is to develop, describe, and validate an open-source software that can effectively and efficiently assess the quality of health information on SHC websites in the United States.

Methods: Our cross-functional team designed and developed an open-source software, QMOHI (Quantitative Measures of Online Health Information), that assesses information quality for a specified health topic from all SHC websites belonging to a predetermined list of universities. The tool was designed to compute 8 different quality metrics that quantify various aspects of information quality based on the retrieved text. We conducted and reported results from 3 experiments that assessed the QMOHI tool in terms of its scalability, generalizability in health topics, and robustness to changes in universities' website structure.

Results: Empirical evaluation has shown the QMOHI tool to be highly scalable and substantially more efficient than manually assessing web-based information quality. The tool's runtime was dominated by network-related tasks (98%), whereas the metric computations take <2 seconds. QMOHI demonstrated topical versatility, evaluating SHC website information quality for four disparate and broad health topics (COVID, cancer, long-acting reversible contraceptives, and condoms) and two narrowly focused topics (hormonal intrauterine device and copper intrauterine device). The tool exhibited robustness, correctly measuring information quality despite changes in SHC website structure. QMOHI can support longitudinal studies by being robust to such website changes.

Conclusions: QMOHI allows public health researchers and practitioners to conduct large-scale studies of SHC websites that were previously too time- and cost-intensive. The capability to generalize broadly or focus narrowly allows a wide range of applications of QMOHI, allowing researchers to study both mainstream and underexplored health topics. QMOHI's ability to robustly analyze SHC websites periodically promotes longitudinal investigations and allows QMOHI to be used as a monitoring tool. QMOHI serves as a launching pad for our future work that aims to develop a broadly applicable public health tool for web-based health information studies with potential applications far beyond SHC websites.

Keywords: adolescents; automated quantification tool; digital health; health information; health information websites; health websites; infodemiology; information quality metrics; online health; online health information quality; public health; student health center websites.