A guide to enzyme kinetics in early drug discovery

FEBS J. 2023 May;290(9):2292-2305. doi: 10.1111/febs.16404. Epub 2022 Mar 1.

Abstract

Drugs interact with their target of interest to bring about the desired phenotypic outcome that results in disease alleviation. Traditionally, most lead optimization exercises were driven by affinity measures (like IC50 ) to inform structure-activity relationship (SAR)-guided medicinal chemistry. However, an IC50 value is a thermodynamic estimate measured under equilibrium conditions that can vary as a function of substrate concentration and/or time (the latter especially for nonequilibrium modalities). Further, like other thermodynamic estimates, it is a state-function that is indifferent to the path traversed from the initial state to the final state. This can be a cause for concern in drug discovery given the predominance of nonequilibrium interactions and the open thermodynamic nature of the human system. Under such situations, employing rates along with equilibrium constants (or IC50 values) would be far more relevant to capture the time evolution of the small molecule's interaction with the target of interest. These rates are generally typified by the rate of association, rate of dissociation and the residence time of the small molecule on the target (target occupancy). These parameters, when combined with the concept of target vulnerability, therapeutic window, pharmacokinetic profile of the small molecule, estimates of endogenous ligand and target turnover, will shed critical insights into the kinetics and dynamics of a small molecule's interaction with the protein, and allow realistic modelling of the system to enable optimizations and dosing decisions. With that aim, this guide will attempt to introduce the traditional role of mechanistic enzymology within drug discovery and emphasize the importance of kinetics in guiding SAR-based optimizations. It will also present initial ideas on how kinetic investigation should be positioned relative to the temporal span of a drug-discovery pipeline to leverage maximal utility from the investment in time and effort.

Keywords: association; dissociation; enzyme kinetics; residence time; target turnover.

Publication types

  • Review

MeSH terms

  • Drug Discovery / methods
  • Humans
  • Kinetics
  • Physics*
  • Proteins*
  • Structure-Activity Relationship

Substances

  • Proteins