Endothelial cell-targeting, ROS-ultrasensitive drug/siRNA co-delivery nanocomplexes mitigate early-stage neutrophil recruitment for the anti-inflammatory treatment of myocardial ischemia reperfusion injury

Acta Biomater. 2022 Apr 15:143:344-355. doi: 10.1016/j.actbio.2022.02.018. Epub 2022 Feb 19.

Abstract

Neutrophils serve as a key contributor to the pathophysiology of myocardial ischemia reperfusion injury (MIRI), because the unregulated activation and infiltration of neutrophils lead to overwhelming inflammation in the myocardium to cause tissue damage. Herein, endothelial cell-targeting and reactive oxygen species (ROS)-ultrasensitive nanocomplexes (NCs) were developed to mediate efficient co-delivery of VCAM-1 siRNA (siVCAM-1) and dexamethasone (DXM), which cooperatively inhibited neutrophil recruitment by impeding neutrophil migration and adhesion. RPPT was first synthesized via crosslinking of PEI 600 with ditellurium followed by modification with PEG and the endothelial cell-targeting peptide cRGD. RPPT was allowed to envelope the DXM-loaded PLGA nanoparticles and condense the siVCAM-1. After systemic administration in rats experiencing MIRI, the cRGD-modified NCs efficiently targeted and entered the inflamed endothelial cells, wherein RPPT was sensitively degraded by over-produced ROS to trigger intracellular siVCAM-1 release and potentiate the VCAM-1 silencing efficiency. As a consequence of the complementary function of DXM and siVCAM-1, the NCs notably mitigated neutrophil infiltration into ischemic myocardium, provoking potent anti-inflammatory efficacy to reduce MIRI and recover cardiac function. The present study offers an effective approach for the controlled co-delivery of siRNA and drug cargoes, and it also highlights the importance of multi-dimensional manipulation of neutrophils in anti-inflammatory treatment. STATEMENT OF SIGNIFICANCE: The unregulated activation and infiltration of neutrophils lead to overwhelming inflammation in the myocardium after myocardial ischemia reperfusion injury (MIRI). Here, endothelial cell-targeting and ROS-ultrasensitive nanocomplexes (NCs), comprised of PLGA NPs decorated with cRGD-poly(ethylene glycol) (PEG)-modified, ditellurium-crosslinked PEI (RPPT), were developed to mediate efficient co-delivery of VCAM-1 siRNA (siVCAM-1) and dexamethasone (DXM). DXM and siVCAM-1 with complementary functions inhibited both the migration and adhesion of neutrophils, efficiently interventing the neutrophil recruitment and interrupting the self-amplified inflammation cascade in the injured myocardium. The molecular design of RPPT renders an effective example for constructing polymeric materials with high ROS sensitivity, and it resolves the critical dilemma related to polycation-mediated siRNA delivery, such as siRNA encapsulation versus release, and transfection efficiency versus toxicity.

Keywords: Anti-inflammation; Ditellurium-crosslinked polyethylenimine; Drug/siRNA co-delivery; Myocardial ischemia reperfusion injury (MIRI); Neutrophil recruitment; ROS responsiveness.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anti-Inflammatory Agents / metabolism
  • Anti-Inflammatory Agents / pharmacology
  • Anti-Inflammatory Agents / therapeutic use
  • Dexamethasone / pharmacology
  • Endothelial Cells
  • Inflammation / drug therapy
  • Inflammation / metabolism
  • Myocardial Reperfusion Injury* / drug therapy
  • Myocardial Reperfusion Injury* / genetics
  • Myocardial Reperfusion Injury* / metabolism
  • Neutrophil Infiltration
  • Neutrophils / metabolism
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • RNA, Small Interfering / genetics
  • Rats
  • Reactive Oxygen Species / metabolism
  • Vascular Cell Adhesion Molecule-1 / metabolism

Substances

  • Anti-Inflammatory Agents
  • RNA, Small Interfering
  • Reactive Oxygen Species
  • Vascular Cell Adhesion Molecule-1
  • Polylactic Acid-Polyglycolic Acid Copolymer
  • Dexamethasone