α-synuclein and phosphoinositide-binding proteins: α-synuclein inhibits the association of PX- but not FYVE-containing proteins with vesicles in vivo

Biochem Biophys Res Commun. 2022 May 7:603:7-12. doi: 10.1016/j.bbrc.2022.01.101. Epub 2022 Mar 4.

Abstract

By an unknown mechanism, alpha-synuclein (α-syn) inhibits autophagy in yeast and human cells. Herein, using the yeast Saccharomyces cerevisiae, we tested the hypothesis that α-syn disrupts autophagy by inhibiting the required association of sorting nexin 4 (Snx4) with phagophores. Snx4 contains a phox (PX) homology domain that selectively binds membranes enriched in phosphatidylinositol 3-phosphate (PI3P). Using fluorescence microscopy, we show that upon nitrogen starvation, 70% of the cells exhibited green puncta (phagophores); whereas identically treated cells expressing α-syn exhibited a significantly lower percentage of cells (30%) with such puncta. Our interpretation is that α-syn outcompetes Snx4 for binding to membranes enriched in PI3P, resulting in fewer phagophores and consequently inefficient induction of autophagy. As a control, we tested whether α-syn disrupts the binding of Vps27-GFP to late endosomes/multivesicular bodies (MVBs). Vps27 contains a PI3P-binding domain called FYVE. α-Syn did not disrupt the binding of Vps27-GFP to late endosomes. α-Syn likely inhibits the binding of PX- but not FYVE-containing proteins to PI3P because FYVE domains bind more than two-orders of magnitude tighter than PX domains. We propose that in all cells, whether yeast or human, α-syn has the potential to inhibit protein trafficking pathways that are dependent on PX-domain proteins such as sorting nexins.

Keywords: Autophagy; Multivesicular body; Parkinson's disease; Retromer; Sorting nexin; α-synuclein.

MeSH terms

  • Carrier Proteins* / metabolism
  • Endosomal Sorting Complexes Required for Transport / metabolism
  • Endosomes / metabolism
  • Humans
  • Oxazoles
  • Phosphatidylinositol Phosphates / metabolism
  • Phosphatidylinositols / metabolism
  • Protein Domains* / physiology
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins* / metabolism
  • alpha-Synuclein / metabolism

Substances

  • Carrier Proteins
  • Endosomal Sorting Complexes Required for Transport
  • Oxazoles
  • Phosphatidylinositol Phosphates
  • Phosphatidylinositols
  • Saccharomyces cerevisiae Proteins
  • VPS27 protein, S cerevisiae
  • alpha-Synuclein