Quantification of Entropic Excluded Volume Effects Driving Crowding-Induced Collapse and Folding of a Disordered Protein

J Phys Chem Lett. 2022 Apr 7;13(13):3112-3120. doi: 10.1021/acs.jpclett.2c00316. Epub 2022 Mar 31.

Abstract

We investigate the conformational properties of the intrinsically disordered DNA-binding domain of CytR in the presence of the polymeric crowder polyethylene glycol (PEG). Integrating circular dichroism, nuclear magnetic resonance, and single-molecule Förster resonance energy transfer measurements, we demonstrate that disordered CytR populates a well-folded minor conformation in its native ensemble, while the unfolded ensemble collapses and folds with an increase in crowder density independent of the crowder size. Employing a statistical-mechanical model, the effective reduction in the accessible conformational space of a residue in the unfolded state is estimated to be 10% at 300 mg/mL PEG8000, relative to dilute conditions. The experimentally consistent PEG-temperature phase diagram thus constructed reveals that entropic effects can stabilize disordered CytR by 10 kJ mol-1, driving the equilibrium toward folded conformations under physiological conditions. Our work highlights the malleable conformational landscape of CytR, the presence of a folded conformation in the disordered ensemble, and proposes a scaling relation for quantifying excluded volume effects on protein stability.

MeSH terms

  • Circular Dichroism
  • Entropy
  • Molecular Conformation
  • Protein Conformation
  • Protein Folding*
  • Proteins*

Substances

  • Proteins